Publikationen

Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes

Autor(en)
Thuong Phan-Xuan, Simon Schweidler, Steffen Hirte, Moritz Schüller, Ling Lin, Anurag Khandelwal, Kai Wang, Jan Schützke, Markus Reischl, Christian Kübel, Horst Hahn, Gianluca Bello, Johannes Kirchmair, Jasmin Aghassi-Hagmann, Torsten Brezesinski, Ben Breitung, Lea Ann Dailey
Abstrakt

High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA')(BB'B'')2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes.

Organisation(en)
Department für Pharmazeutische Wissenschaften
Externe Organisation(en)
Karlsruher Institut für Technologie, Martin-Luther-Universität Halle-Wittenberg, Technische Universität Darmstadt, Helmholtz Institut Ulm, University of Oklahoma, Universität Wien, Vienna Doctoral School of Pharmaceutical
Journal
ACS Nano
Band
18
Seiten
19024-19037
Anzahl der Seiten
14
ISSN
1936-0851
DOI
https://doi.org/10.1021/acsnano.4c03053
Publikationsdatum
07-2024
Peer-reviewed
Ja
ÖFOS 2012
210004 Nanomaterialien
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeiner Maschinenbau, Allgemeine Physik und Astronomie, Allgemeine Materialwissenschaften
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/a87dc4b0-4cf4-4df9-bf3d-c352ee46a345