Catastrophic disruption of asteroid 2023 CX1 and implications for planetary defence

Author(s)
, Auriane Egal, Denis Vida, François Colas, Brigitte Zanda, Sylvain Bouley, Asma Steinhausser, Pierre Vernazza, Ludovic Ferrière, Jérôme Gattacceca, Mirel Birlan, Jérémie Vaubaillon, Karl Antier, Simon Anghel, Josselin Desmars, Kévin Baillié, Lucie Maquet, Sébastien Bouquillon, Adrien Malgoyre, Simon Jeanne, Zouhair Benkhaldoun, Hasnaa Chennaoui Aoudjehane, Hebe Cremades, Katherine Vieira, Rene A. Mendez, Andrés Jordán, Bjorn Poppe, Detlef Koschny, Emmanuel Jehin, Hervé Lamy, Dario Barghini, Daniele Gardiol, Salma Sylla, Ashley King, Andrew R.D. Smedley, Jim Rowe, Enrique Herrero, Josep Maria Trigo-Rodriguez, Jiří Borovička, Pavel Spurný, Hadrien A.R. Devillepoix, Marco Micheli, Davide Farnocchia, Shantanu Naidu, Peter Brown, Paul Wiegert, Krisztián Sárneczky, Oscar Marchhart, Martin Martschini, Silke Merchel, Alexander Wieser
Abstract

Mitigation of the threat from airbursting asteroids requires an understanding of the potential risk they pose for the ground. How asteroids release their kinetic energy in the atmosphere is not well understood due to the rarity of large impacts. Here we present a comprehensive, space-to-laboratory characterization of an impact of an L chondrite, which represents a common type of Earth-impacting asteroid. Small asteroid 2023 CX1 was detected in space and predicted to impact over Normandy, France, on 13 February 2023. Observations from several independent sensors and reduction techniques revealed an unusual but potentially high-risk fragmentation behaviour. The nearly spherical 650 ± 160 kg (72 ± 6 cm diameter) asteroid catastrophically fragmented at a dynamic pressure of 4 MPa around 28 km altitude, releasing 98% of its total energy in a concentrated region of the atmosphere. The resulting shock wave was spherical, not cylindrical, and released more energy closer to the ground. This type of fragmentation increases the risk of substantial damage at ground level. These results warrant consideration for a planetary defence strategy for cases where a >3–4 MPa dynamic pressure is expected, including planning for evacuation of areas beneath anticipated disruption locations.

Organisation(s)
Isotope Physics
External organisation(s)
Université de recherche Paris Sciences et Lettres, Planétarium de Montréal, University of Western Ontario, IMPMC, Université Paris Saclay, Museum national d'Histoire Naturelle, Aix-Marseille Université, Naturhistorisches Museum Wien (NHM), Natural History Museum Abu Dhabi, CEREGE - Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Romanian Academy, International Meteor Organization, Institut Polytechnique des Sciences Avancées, Cadi Ayyad University, Hassan II University, Casablanca, Universidad de Mendoza, Universidad de Atacama, Universidad de Chile, Universidad Adolfo Ibáñez, Millennium Institute of Astrophysics , El Sauce Observatory-Obstech, Carl von Ossietzky Universität Oldenburg, Technische Universität München, Université de Liège, Royal Belgian Institute for Space Aeronomy, INAF-Osservatorio Astrofisico di Torino, Université Cheikh Anta Diop, The UK Fireball Alliance (UKFAll), Natural History Museum London, University of Manchester, Institute of Space Studies of Catalonia (IEEC), Spanish National Research Council (CSIC), Czech Academy of Sciences, University of Western Australia, European Space Astronomy Centre (ESA), California Institute of Technology (Caltech), Eötvös Loránd Research Network
Journal
Nature Astronomy
Volume
9
Pages
1624-1637
No. of pages
14
ISSN
2397-3366
DOI
https://doi.org/10.48550/arXiv.2509.12362
Publication date
09-2025
Peer reviewed
Yes
Austrian Fields of Science 2012
103004 Astrophysics
ASJC Scopus subject areas
Astronomy and Astrophysics
Portal url
https://ucrisportal.univie.ac.at/en/publications/0d727385-be12-48b1-9896-39cc608eb078